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ABSTRACT
)7 To simulate long-run averages of time integrals of a recurrent semi-

Markov process efficiently, convert to discrete-time by simulating only an
imbedded chain and computing the conditional expectations of everything else
needed given the sequence of states visited. This reduces asymptotic variance
and eliminates generating holding-time variates. In this setting, ,

The avikers

uniformizing continuous-time Markov chains is not worthwhile. -We-generalize

beyond semi-Markov processes and cut ties to regenerative simulation

-
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methodology . LJ?%t”,rwJ,,'\
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; ) SIGNIFICANCE AND EXPLANATION ‘
. . i
\ A broad class of stochastic systems which are studied in operations
3‘ v
.:1 research may be modelled as semi-Markov processes. Frequently, one is
b interested in obtaining an estimate, via simulation, for the steady-state

~.:-: average of such a process. In this paper, we offer new insights on an easily
f:fj' implemented procedure, which can substantially improve the accuracy of such an
estimate. The basic idea involves passing from the continuous-time semi-
Markov process to an appropriate discrete-time sequence, by conditioning out
'_':::‘. holding time variables.
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_:2 The responsibility for the wording and views expressed in this descriptive

4 summary lies with MRC, and not with the authors of this report.




DISCRETE-TIME CONVERSION FOR SIMULATING

., SEMI-MARKOV PROCESSES
6
’
) Bennett L. I-‘oxl'3 and Peter W. Glynnz'4
"
. ' 1. Introduction
;gg
g? . let X be & positive recurrent semi-Markov processes and f be a
W
'
%- real-valued function. We want to estimate the time average
’?3
r=1im (/T)E JT £(x(t))de (1)
£N Tow 0

- assuming it exists. Section 2.1 starts with a standard regenerative
; simulation approach and then converts to discrete time by conditioning on the
‘i" sequence Y = (Yb’Y1’°") of states visited in an imbedded Markov chain. This
reduces variance and also, typically, the work to simulate. Hordijk,
Iglehart, and Schassberger [6] adopt the same approach for the special case of
continuous~time Markov chains, except that they prove variance reduction by
explicit calculation without mentioning the general principle that computing

. conditional expectations reduces variance. Peter Lewis informed us that he

\El too was aware that this conditional Monte Carlo approach would streamline the
3

\t‘ proofs in [6]. Fox and Glynn [5] obtain an analog of these results for
$§ certain finite~horizon semi-Markov processes. Uniformization pays in [5] but
{{ not here as shown in [6] and, with less effort, in section 3.

Section 2.2 considers more general processes and cuts ties to the

regenerative approach.
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1 time O and set S0 = (0. Put

Ty Sp T Sy 2
4
v the length of the j-th regeneration cycle. Following for example the
4
) development in Bratley, Fox, and Schrage [2], section 3.7, define
3 vV, = fl X(t))dt 3
3 17 (s, s, ) HX®) (3)
5 h M
;: - nil
. v = (1/n) v (4)

n =0 3
o - “il
- T = (1/n) T (5)
: " =0 3
: D = Vi~ Ty (6)
& rn = Vn/‘l’n (7)

2
'h .-, .'," - . ,.‘,-- ORI R ., ' - :r,l..-.‘.’..-‘...' R . ‘_‘ . ‘,‘~~‘\‘q“

u ‘FN}V ""hj "r,{,')‘)" o S -f-i' .,‘n' % q,«.’: -,';-. - .'.) ST r/ 3 L 5 A . \"-\-\“L

’_ .” N CRSant
lJ‘N!,’ A M’: N & ‘ ‘ ! ! h "* S 2.y

2. Discrete-time conversion reduces variance

In section 2.1 we sketch how to generalize results of [6]) to
regenerative semi-Markov processes and at the same time indicate how to
simplify proofs. Section 2.2 gives a formal proof and further generalizes the

class of processes considered in [6); more importantly, it allows

nonregenerative approaches.

In section 2, we limit the discussion to a comparison of asymptotic
variances. To estimate these variances and construct confidence intervals,
see for example Bratley, Fox, and Schrage [2], chapter 3. Standardized time

series can also be used, as in Schruben [7].

2.1 Regenerative framework

Let i be a (convenient) recurrent state and let Sj be the time at which

state 1 is visited for the j-th time. We assume that state i 1is visited at

VAN

.

sl S I
.« .

AP

3

OO, N R T ) (VORI

™=

e —
'IA-“‘

Y

K,

P,

R T
D +

£ LS

a3

“ -"\.' ~\~"!\
. ‘.\‘W-. \ VSR

Iy C o ﬁl&\ S \\ ot



LG & e e T T TN T U T T oW R N R TON T W R R,

A4
éz -~ -

p t = E[T 17Y] (8)
5

. r =E[V 1Y]A (9)

3
I3t
We reach state YJ at time Tj' Let
¢ % " Terr " T (10)
P(ak € dt | Y) = F(Yk,Yk+1,dt) (11)
i o0

w(x,y) = [ zF(x,y,dz). (12)

0
.*‘:j As jump Nn ends, we visit state 1 for the n-th time. This gives
o N -1
N e (u/n) 1 w(r,v.)) a3

T = n

" n j.o ¥ J’ j+1
3“

N N -1
\.} - n_

*: : E[V_ 1 Y] = (1/n) JZ f(yJu(vy,vy,), (14)
.} 80 we can compute ;n in (9). Computing and accessing the expected tramnsition

.S
‘.‘j times u(Yj’Yﬁl) and the transition probabilities are similar tasks. Fox and
* Glynn [5] and references cited there discuss the latter. When u(Yj’Y:H-l)
4 depends only on Yj, the former job is normally easy.

P -

:‘, Since X 1s a semi-Markov process (by assumption), the «a,’s are
W, k
o conditionally independent given Y. So Y regenerates implies X regenerates.
_t Assuming certain mild moment conditions [inequality (24) will do] and
:L:: mimicking standard arguments, we get
b .

/:1(}“ - r) = (8/Er,) NO,1) (15)
-::T; ~ /x;(}n - r) = (o/Er,) N0,1) (16)
g where
.l
b
-..

A 3
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62 - Var D, (17)

b <

o? = Var ({p 1 Y]). (18)

Using the standard variance-reducing property of conditional

L&~ A3 B

e

expectation, we get o € §. C(Clearly, Etl = E;l, 80 }n has smaller variance

than r.
n

ol Sl

2.2 Generalization and formal proof

Now we neither assume that Y is a Markov chain nor that the ck'c are

i conditionally independent given Y. The only structural assumptions relating Y
i and X are (11) and (19). With these provisos, define Yk’ ays and u(x,y) as
o before. Let I be an indicator, T0 =0, Tk 4+ », and

: .

:-_.: X(t) = kzo Y, (1, € ¢t< Tkﬂ) . 19)

Thus, X is more general than a semi-Markov process.

The obvious estimator is

‘““"p",

T
R = (1/T) [ ™ £{x(s))ds (20)
oy n n 0
K
1%
,: Typically, the expected work to generate Rn or r grows at rate n wvhether n
Wy
™ indexes "transitions" as in this section or cycles as i{n section 2.1. So we
- compare efficiencies of various estimators with respect to n.
-3 Roughly speaking, to convert to discrete time we compute conditional
i‘ expectations given Y. The alternative estimator
¥
i - n1
S % = kzo (g )u(y,, Yk+l)/ Z "(Yk’ ke1) @y '
3 is certainly plausible. The only difference between in defined by (20) and }n
2 - - X
A defined by (7) lies in what n indexes; likewise, for Rn and r,. We show that 1
3
4 4
33 - " . »
% RGN
\. "

dr lﬁ
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Rn beats in in a precise sense, provided that in i8 no harder to compute than

R .
n
We assune that X satisfies
(4) Tn/n =>8 >0 (B constant)
(B) there are finite constants r, and %, such that
oy o
(1//n) [ f(x(s)-rl)ds => o, N(0,1)
0
(C) there are finite constants r, and 9, such that

n1
(1//n) I (5] 5 )% ,,) > oy NO,D)

n1
(D) the sequences {n“l ) f(Yk)ak: n> 1},
k=0

, T
{Th/n: n> 1}, and {n_l[f n (f(X(s)]-r)ds]Z: n> 1}
o
are uniformly integrable,

Section 2,3 contains examples.

Not surprisingly, we have

Proposition. L= r2.

T
Proof. From (A) and (B), we get %-f nf(X(s)]ds = rlB. Equivalently,
0
% ) f(Yk)ak => r,B. From (D), we also get weak convergence to ra in the
0
function space L, . From p. 306 of Chung [4], we therefore get

nl

)
= E(£(Y )a, 1Y) = r,B;
" k=0 Kk 1
1 n1
i.e. a kz ( )u( k’ k+l) = I'IB.
5
R &‘1'5':‘»:’ SRR SR S e
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The 1left side is the numerator of in' Likewise, for the denominator of in we

get

1 n-z'_l u(Y

Y, ) => 8.
n k=0 k" k+l

From (C), in => r,. Comparing these results proves that r, =r '

1 2°

We are now ready to compare R and in. From (A) and (B):
/n (R -r,) => (o, /8) NO,1); (22)
from (A) and (C):
/a (R -r,) => (o,/8) N(0,1). (23)

That confidence intervals with fixed coverage based on in are

asymptotically shorter than those based on ﬁn now follows from our main

Theorem. 02 < 02.

2 1

Proof. By Jensen’s 1inequality for conditional expectations (see p. 302 of

Chung [4]),
T T
n-lEUon(f(X(s))-r)ds)2 > n_lE[(fon(f(X(B))‘r]ds I Y]z]
_ 1l
- o g L () -ulr,x, ) 1%

By (D) the extreme left side converges to 02

,+ We show that the right side

converges to °§v which requires a uniform integrability argument.




Since Ank is Y-measurable, apply Jensen’s inequality again to get

{1, (4 nil (£(¥,)-r)u( 12} (4 Tn ) 2]
LRI RS E[(IAnk n fo f( x(s)-r)ds} )°].

Use (C) to see that lim sup P(A_, )
nk
k+® n

see that the term in brackets goes to 0 uniformly in n as k + @, This proves

+ 0 and then theorem 4.5.3 of Chung [4] to

7

uniform integrability of the term in braces. !

2.3 Examples

1. Let X be a semi-Markov process for which Y is regenerative: there exists s
such that P[Yn = g infinitely often] = 1. Set T = inf{n > 1: Y o= s} and
assume that Y, = s and

-1
Bl I (1E(g) 1+ 1)e)" <o, (24)
k=0
Then (A)-(D) hold; for uniform integrability, see Chung {3].

2. Llet X be a semi-Markov process for which Y is a stationary y-mixing
process., If Y 1s Y-mixing, then {f(Yh)an} is ¢Y-mixing with  mixing

coefficients doubled since o
1e{£(Yy)a, € A, f(Yn]an e B} - P{£(Y)o, € A}-P{f(Yn)un € B}I 1
= 1E{P{£(Y )a, € A | Y}'P{f(Yn]an e B Y}} - P{f(Yo)ao € A}-P{f(Yn)an e B} 3

= 188, (%y,Y, )og, (Y Y ) - g (%Y, ) Eg, (Y .Y 1)1 X
(vhere g (x,y) = P{£(¥))a; € A1 ¥, =x, ¥, =y}

g, (x,y) = P{f(Yn)an eBIY =x, Y = v})

L 3 e

< 2v Eg (¥),Y,) = 2v +P{£(¥ ), € A},
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the inequality following from (20.28) of Billingsley [l1]. Suppose that
(-]
Z ‘pnl/Z Cw
=0
2
and E[(f[Yo)H]ao] (w,

Then, (A) - (D) hold (see theorem 20.1 of Billingsley [1]).

3. Uniforuization loses

For the spucial case of continuous~time Marqu chains with conservative
generator Q and jump rates having least upper bound A { ®, we can uniformize.
This corresponds to the equal holding-time method of [6). The method of
section 2.1, without uniformization, corresponds to the constant holding-time
method of [6]. With wmiformization, the imbedded discrete~time Markov chain W
has null jumps from a state to itself. Thus, to generate any fixed number of
regeneration cycles with the equal holding-time method requires more jumps,

hence more work. It also gives more variance, as shown in [6].

We now give a simpler proof. Delete all null jumps from W to get Y,
giving o(Y) c o(W) where o(H) is the o-field generated by H. By proposition
G.1 1in [5] for example, we get higher variance by conditioning on the latter.

Thus

Var (E[Dk | Y]) < Var (E[Dk I w). (25)

Nevertheless, what 1s the best way to uniformize? To get a legitimate
representation, we wmust choose the (Poisson) clock intensity @ > A in the

uniformized procees. Choosing 8 = XA stochastically minimizes the number of

Jumps in W to simulate a fixed number of regeneration cycles, hence

PRP R A S e ey e g |




stochastically minimizes work. Hordijk, Iglehart, and Schassberger [6] show
o by explicit caiculation that choosing 6 = A also minimizes 02 in (18). An
. outline of an easier proof follows. Subscript W and X to indicate clock

intensity. Put Xx and Xe on the same probability space using three

. synchronized streams of common random numbers. Stream 1 generates the common ;
. non-null jump subsequences of W& and We. Stream 2 generates the null jumps so

; that each null-jump sequence in W, is at most as long as the corresponding

Ej null-jump sequence in Wb. Stream 3 generates clock chimes so that chime j of 3
: the 6-clock sounds before or with chime j of the A-clock. Appendix B of [5],

Ef in a more general setting, spells out the details. Thus

g o(%) co(w) (26) '
L

for all 8 > A. Again wusing the fact that conditioning on less reduces

variance,
. var (E[p_ 1 o(w)]) < var (e[, 1 o(w)]), (27)
illustrating the power of the conditional Monte Carlo approach.

In the setting of section 2.2 specialized to continuous-time Markov
Y. chains, similar arguments give counterparts to (25) and (27). Since >

"o uniformization increases both variance and work, don’t use it there either.
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